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SHEAR WAVES IN AN ELASTIC WEDGEYt

J. D. ACHENBACH

Department of Civil Engineering, Northwestern University, Evanston, Illinois

Abstract—An elastic wedge of interior anglesn is subjected to spatiaily uniform but time-dependent shear tractions,
which are applied to one or both faces of the wedge, parallel to the line of intersection of the faces. The transient
wave propagation problem is solved by taking advantage of the dynamic similarity which characterizes problems
without a fundamental length in the geometry. The shear stress 14, is evaluated, and it is found that the singularity
near the vertex of the wedge is of the form r{1~1/(1 — ). The results show that the stress is not singular for
interior angles less than n. As a special case we obtain the dynamic shear stress generated by the sudden opening
of a semi-infinite crack in 2 homogeneously sheared unbounded medium,

INTRODUCTION

ProBiems that are concerned with the propagation of small deformations in linearly
elastic solids are generally solved by means of Fourier transform techniques. If the region
in space is unbounded, and if no characteristic length of the geometry enters the formula-
tion, it may reasonably well be expected that a closed-form solution can be worked out.
In obtaining this solution the use of Fourier transforms becomes, however, less attractive
for more complicated regions in space, such as wedges. In this paper we consider, therefore,
an alternative method of solution which is based on the dynamic similarity that characterizes
problems without a fundamental length. This method, which has been used extensively
in supersonic aerodynamics [1, 2], was applied by Miles to wave propagation problems in
homogeneous elastic solids [3].

We consider the transient waves generated by spatially uniform but time dependent
shear tractions which are applied to one face of a wedge in a direction parallel to the line
of intersection of the faces. The other face is assumed free of surface tractions. Once the
solution to this problem has been obtained we can, for arbitrary vertex angles, easily
construct the solution for the cases where both faces are subjected to shear tractions, or
where one face is clamped. As an interesting special solution we obtain the dynamic shear
stress generated by the sudden opening of a semi-infinite shear crack in an unbounded
medium. For the general case special attention is devoted to the singularity of the shear
stress near the vertex of the wedge.

The transient diffraction of plane waves by a wedge in an acoustic medium was treated
earlier by essentially the same method by Miles [4] and Keller and Blank [5].

+ The results of this paper were obtained in the course of research sponsored under Contract No. N00014-67-
A-0109-0003, Task NR 064-496 by the Office of Naval Research, Washington, D.C., while the author was
Visiting Associate Professor in the Department of the Aerospace and Mechanical Engineering Sciences,
University of California at San Diego, La Jolia, California.
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GOVERNING EQUATIONS

A homogeneous, isotropic, elastic wedge of interior angle »x, see Fig. 1, whose faces
are defined by 6 = 0 and 6 = xx, respectively, is subjected on the face 6 = 0 to a uniform
but time dependent shear traction 1,. For the time being we assume x > ; the case % < 1
will be considered later. The shear traction generates horizontally polarized shear motion
in the z-direction only, which is governed by the equation
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Fic. 1. Wavefronts at time .

where w is the displacement in the z-direction, ¢ = (u/p)* is the velocity of shear waves,
and r, 8, z are cylindrical coordinates. It is assumed that the wedge is at rest prior to
t=20

t <0, w(r, 8,1) = w(r,6,t) = 0. (2)

The displacement field generated by a uniform surface traction of arbitrary time depend-
ence can be obtained by Duhamel superposition, once the displacements for a surface
traction varying with time as the Dirac delta function have been found. We thus first consider
the following boundary conditions

0 = O, r = 0: Toz = E QXY = Tlé(l) (3)
r 08
G=nrn, r>0: T =E§§j:‘~0 “4)
’ = 00

The problem at hand consists of finding a solution of equation (1) satisfying the initial
conditions (2) and the boundary conditions (3) and (4).

Some observations on the pattern of waves propagating in the wedge can be deduced
from elementary principles of wave propagation. The surface traction (3) generates a
plane wave with constant displacement

cTy

wy = = 5 (5)
u
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This wave is called the primary wave, and in Fig. 1 its wavefront at an arbitrary time ¢
is indicated by BD. Since the wedge is at rest prior to time ¢ = 0, the medium is undisturbed
ahead of the wavefront BD, and as discussed above the displacement is constant behind it.
In addition to the primary wave, the vertex of the wedge, as well as the non-uniformity
of the surface traction across the vertex, generates a cylindrical wave with center at O.
Since the displacement is continuous across the cylindrical wavefronts we have for
x> 3:w =0 along BC.

There is no characteristic length in the problem, and it is thus to be expected that the
solution shows dynamic similarity, ie. the displacement is a function of r/t and 8. 1t is
then expedient to introduce as a new independent variable

s = rft. (6)

As a function of s and 6 the displacement w(s, 6) satisfies

s2\ o*w 2s*\dw  O*w
2 —_ — — i | i — =
’ (1 c2) os? +S(1 02)68+ a0z = 0
For s < ¢, equation (7) is elliptic. Upon introducing Chaplygin’s transformation
f = — cosh™! (‘E) ®)
equation (7) reduces to
Pw  Pw 0

The solution of Laplace’s equation may be written as the real part of an analytic function

x(B,0),
w(B, 0) = Re x(8, 6). (10)

For s > ¢, equation (7) is hyperbolic and may be reduced to the canonical form by the
transformation s = ¢ sec o

From Fig. 1 the region in which equation (7) is elliptic is now identified as the cylindrical
region ABC. All that now remains to be done is to find a harmonic function w(B, §) in
the segment 0 < 6 < xm, s < ¢ satisfying boundary conditions which for x > § take the
form

ow
9:0, S: ]
s<c¢ 5 0 (11
n CcT
s=c¢, 05935: w=w1=—71 (12)
n -
s=uc, EsHanA w=0 (13)
0=wnn, s<c oo (14)
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In equation {11) we have used that for t > 0 the surface traction has returned to zero, see
equation (3). The function w{f, 6) can be obtained in several ways; here we elect to map
the segment s < ¢, 0 < 0 < xn on the half-plane y = 0 by a conformal mapping which
was introduced by Craggs [2]

{ =&+ in = sech{(f + i6)/x]. (15)

Equation (15) can also be written as
g -1
{= [coshﬁcos— + isinhgsing] . {16)
.4 X i FA

The mapping of the segment s < ¢, 0 < # < xn on the {-plane is shown in Fig. 2, where
the positions of the various points are indicated. The boundary conditions (11)-(14) are
converted into conditions on the real axis, and we find forx > 1

0
g<t1: Yoo (17)
on
n .
1<é< l/cosé—;: W= wy (18)
E= l/cosgi: w=20 (19)
¥4
i< -1 w=0. (20
7
¢’ 0’ A’ B’
A U
(cosek)

F1G. 2. The {-plane forx > L.

For 1 > » > } the point B’ is located on the negative real axis and (17)-(20) must be

modified accordingly. ‘
In this paper we are interested in the stresses, in particular the shear stress 5., which

may be written in the form
_H fil Qf:. 21
to: = r Re[d(: 69]' @b

According to (17), dy/d{ is real for |¢] < 1, and from (18)~20) we conclude that dy/d{ is
imaginary elsewhere along the real axis, except at the point

&= & = lcos . 22)
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At this point Re y is discontinuous, and Re dy/d{ is a delta function, which implies that
dy/d{ has a simple pole at ¢ = &p. An expression satisfying the foregoing requirements is

dy i B

& C-i-&
The constant B is found by integrating counterclockwise along a small semi-circle around
{ = ¢g and equating the result to —w;. We obtain

(23)

LS U T 7 GO 24
B =—(s 1) - tan_—. 24)
From equation (15) we compute
of i tanh[f/x + i(8/3x)]
80 x cosh[B/x + i(0/%)]

Upon substitution of (16) and (24) into (23), and subsequent substitution of (23) and (25)

into (21) we obtain
in(w/2
Tgr = ki sin(r/2x) Re{i / [cos—n— — cosh b + i g”} (26)
2u X *

r 7

(25)

The real part can easily be evaluated, and the result is

Tpe = — f-;i iﬁn(:}i 29k, (i, 9), 27)

where
F ( r 0) _ sinh (B/x) sin (6/x) -8
e’ 7] T [(cos m/2x) — (cosh B/x)(cos 6/x))2 + [(sinh B/x)(sin 8/x)]* 8)

Equation (27) represents the stress within the cylindrical wavefront, r < ct. For r > ¢t
and 0 < 8 < /2 we have

r.
Tg = T, COS 86 (t ~ sin 6). {29)

1t is of particular interest to investigate for t > 0 the singularity of 15, as r - 0. To
this end we evaluate asymptotic expressions for sinh(f/x) and cosh{(f/x) for small r/ct.
Using a well-known representation for cosh ™!, we find from (8) and (6):

e[ )

Equation (30) is subsequently used to write

e L R C O I VO
Smhg B %[(e%)u{l ' [1 B (E}VE)T} - (C—:)W{} ’ [i ) (g”) T} W]' (32)
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Thus for (r/ct) < 1

t 1%
COShE ~ (C~) AU (33)
% r
) g 't /%
sinh L ~ = (E) Al (34)
P ¥
For » > 3 the singularity in the shear stress is thus obtained as
2c . . |6
Tgs ~ —LLI(ZCI)’”“ sin (i) sin ~)r””". (35)
(% 2x ®

We note that the singularity vanishes for # = 0 and 6 = »=x, and reaches a maximum for
0 = »z/2. The singularity disappears altogether if % < 1. The shear stress is thus singular
only if the interior angle of the wedge exceeds n.

BOTH FACES SUBJECTED TO SHEAR TRACTIONS

If the faces defined by 8 = 0 and 0 = xn are subjected to shear tractions t,, = 1,(t)
and 1,, = 1,0(t), respectively, the shear stress t,, is obtained by simple superposition.
We obtain for r < ¢t

el
where F,(r/ct, 0) is defined by (28), and
F r _ sinh(f/x) sin(6/x) - (37)
et [(cos m/2x) + (cosh B/x)(cos 8/x)]* + [(sinh B/x)(sin 0/x)]*

in addition, we have for r > ¢t and 0 < 6 < 7/2 the plane wave (29), and for xn > 0 > xn
— n/2 we have

Tor = T, COS( — 0) 5[z — D sin(en ~ 9)]. (38)
c
It 1s clear that for this case the singularity is of the form
0
Tgz ~ 2ty + 1) (2er)y~ i~ sin(f—-) sin(‘) plim= i (39)
X 2x x

Thus, the singularity vanishes if the two shear tractions are of the same magnitude and
sense, ie. if 1, = — 1,.

THE SHEAR STRESS FOR STEP SURFACE TRACTIONS

It is of considerable physical interest to compute the dynamic stresses for the case that
the surface traction varies as a Heaviside step function,

0 =0, r=0: 14, = Ty 1(t) (40)
0 = xm, r>0: 7q: = 0. 41)
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For 0 < 0 < m/2 the shear stress 1, is now obtained as the sum of the integrals of (27)
and (29)

M H
tp. = T; cOS 0 1(t—fsin0) —C—nﬂn—(“ﬁ’in(z—f) Fl(L,G) do. (42)
C r C cv

(%4

For 0 > =/2 we obtain

T, sin(x/2 !
TOZz_QMI(t_E)J Fl
rfc

r ¥4

. 0) dv. (43)
cv
The behaviour of 74, for small values of r is found by introducing the new variable

p=— (44)
r

The integrals in (42) and (43) then become

s1n(n/2x
Tg: = — L~ ——

) ) " Fip.0)d (@5)

We are interested in approximating (45) for large values of ct/r. For large p the cosh[f(p)/x]
and sinh[B(p)/»] may be approximated by, see (31) and (32),

coshg ~ pliii-t (46)
sinhg ~ — plimim—l, (47)
x

The integral can now be evaluated, and for % > 4, % # 1, and r/ct < 1 we find

T r\Vt  a) (6
~ I ) sin|2). 4
tor n(%—l)(th) bl PV R P (48)

For % = 1 and r/ct < 1 we obtain

1 t
tes ~—Tysin In (07) (49)

We note that no singularity occurs if the interior angle of the wedge is less than 7.

SPECIAL CASES

The integrals in (42) and (43) can be evaluated with particular ease for three special
values of : % = 0.5, = 1 and » = 2.

For » = 0-5 we have a quarter-space subjected to uniform surface tractions. From
equations (27) and (42) it is immediately noted that the cylindrical wave vanishes, as it
should, and we thus are left with just the plane primary wave.

The case » = 1 is concerned with a half-space. We assume uniform surface tractions
that are of different magnitudes for § = 0 and 0 = =, respectively. Equation (36) then
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reduces to

¢ l(t; + 1;)sinh Bsin 6
KA cosh?f — sin?0 (>0)

Equations (31) and (32) become

cosh =i: (51)

sinh § = — [(5:)2 - 1T. (52)

¢ (t; + ,)(sin O)[(ct)* — r2*

Thus forr < ct:

L= 53
o T Hen® — 2 sin?0) S
The cylindrical wave vanishes, of course, altogether for 1, = —1,. For r/ct < 1 we recover
the behaviour shown in equation (39) for » = 1.
For step surface tractions the integration of (36) yields
1 ¢ " (st — bt (s — bRyt
I, == —(T, + T, -~ ds, 54
o an( 1+ 1) hr{s—brsinﬂ s+ brsingf (54)
where we have introduced the slowness b,
1
b =-. (55)
¢
This integral can be evaluated to yield for br < ¢
T. 2 byt 4t
Iﬂz e Ti<j-__g {Sin 0 ln [Q_._\_Q_if]
id br
tsin 6 — br
1 in- 1 -—
2 cos B/ sin [t — brsin 0]
tsin @ + br
-1 in ! ———— [+ 56
2 ¢0s f'sin [t + brsin 9]} (56)
For 0 < m/2 the shear stress is then obtained as
14, = T cos 8 1(t — brsin §) + I, 1(t — br). (57
For 0 > n/2 we have
To; = —Tocos B 1(t — brsin 0) + Iy 1(t — br). (58)

For br/t < 1 the behaviour is as indicated by (49).
The case » = 2 corresponds to a semi-infinite slit in an unbounded medium subjected

to different shear tractions on the two faces. For

T, =1, = 1, (59)
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equation (36) reduces to

¢ 2t tsinhi Bsin3 0(1 + cosh B + cos 0)

= (60)
= T (cosh B)? — (sin 6)°
For » = 2, equation (32) becomes
a
sinh B = —2‘*(7—1) . (61)

After some further manipulation we then obtain for r < ct

. Tys (c_t ~ 1)%{cos%(n/2 - ) sin 4 (n/2 - B)} 62)
o r t —(r/c)sin® -+ (r/c)sin@

The behaviour for r/ct < 1 agrees with what is obtained from equation (39) for x = 2.
The integrals to determine the stress for step surface tractions can again be evaluated
explicitly, and we obtain for br < ¢

— + 1
(%f)% ”2]7‘1 - {(t — br)t + [br(1 — sin O)] tan—l[b—r(lt_—i’i’nm] }cosi

Fi4
5“9)
T
5‘9)’
6

where Tis the applied surface traction. For 0 < 6 < n/2 and 2n > 6 > 3n/2 the shear
stress 1,, is obtained as

9, = Tcos 0 1(t — brsin 0) + Jg,1(t — br). (64)

br(1 + sin )

—{(t — br)* + [br(1 + sin O)]* tan“[t;br—]z}sin%

For n/2 < 6 < 3n/2 we find

To, = Jg,1(t — br). (65)
If r/ct < 1 the angular behaviour is of the form
nte, [ct\i( 1= 1=
— ~ |5 == — 0] - sing|Z — 66
2T 2r) {C"Sz(z 9) sinz{3 — 9y (66)
which agrees with (48).
Equations (64) and (65) when superposed on a uniform shear stress 7, = — T yield

the solution for the stress 1,, due to the sudden opening of a semi-infinite crack in an
unbounded medium which was in a state of uniform shear prior to fracture. As is common
in crack problems we find that the stress is singular near the crack tip as r—%.

To obtain an independent check of equation (62), the problem of a semi-infinite slit
in an unbounded medium subjected to shear tractions on the faces (x = 2) was also solved
by means of Fourier transform techniques. By using the one-sided Laplace transform over
time, and the exponential Fourier transform over one of the spatial coordinates, in con-
junction with an application of the Wiener—-Hopf technique, the transformed stress was
obtained. The inverse transform was subsequently evaluated by means of Cagniard’s
method. The solution obtained by this rather cumbersome procedure verified equation (62).
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It appears from equation (66) that for step surface tractions the shear stress increases
beyond bounds as ¢ increases. This indicates that a static solution does not exist. A similar
result was found by Maue, equations (72) and (76) of Ref. [6], for the problem of the slit
subjected to normal surface tractions.

CONCLUDING REMARKS

Although only the case » > 0-5 was treated here, it is clear that wave propagation in
wedges with interior angles less than n/2 can be treated by using superposition in conjunc-
tion with symmetry or antisymmetry properties. Thus if the face § = x*n (025 < »* < 0-5)
is free of traction, and 6 = 0 is subjected to 7,4(¢), we can simply use (36) with x = 2x*,
and 17, = —1; to obtain the solution. If the face 6 = x*zn is clamped, ie. w = 0, we
substitute x = 2x* and 1, = 1, in equation (36). For x** < 0-25 the solution for 025 < »*
< 05 has to be used in the just described procedure.

It is finally concluded that the method of homogeneous functions is an efficient method
to study the dynamic response of an elastic wedge to spatially uniform shear tractions.
For surface tractions varying in time as Heaviside step functions it was found that for
interior angles xn the singularity of the shear stress 14, is of the form [rV?~1/(1 — x)],
which shows that the stress is singular only for » >1.
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AGCTPAKT-—Y Hpyruil KIMH, BHYTPEHHBIA YrOJI KOTOPOTO COCTaBHAET X7T, HAXOLUTCA HOK BIAMAHHEM CHI
CABWra, NPOCTPAHCTBEHHO ONHOPONHBIX, HO 3aBHCHIIUX OT Bpemery. Cuibl NPUITOKCHHBIE X OBHOM WiIH K
ABYM CTOPOHaM KJIHHA W NapaUienbHbl K KIIMHAM epecedeHus 3TuX cropoH. Penaercs 3azava no pacn-
POCTPAHEHHIO TIOTEPEYHON BOMHBI, MCTIONL3YS HMHAMMYECKOE NoNoOHe, KOTOPOe XapaKTepH3yeT 3ajauu
Ge3 ocHOBHOM AnMHBI B reoMeTpuu. Onpenessercs HanpsXXEHHE CABHIA Tg: H HAXOHMTCA, ¥TO CHHIY/IA-
PHOCTH B3 BEPIUMHB KIHHA HMeeT dopmy r ™~ 1/(1 — 3}, Pe3ynsTaThl NOKA3BIBAFOT, YTO HANPAKEHHR
He CHHIYNSIPHBI VIS BHYTPEHHBIX YTTI0B MeHee 7. B xauecTBe CreuMaibHOTO CIIyyast, ONY4aloTCs IRHAMU~
YeCKHE HANPSDKEHUS CABHUIa, BLI3BAHHBIC BHEIANHLIM OTKPHTHEM NONy-BeckoHeuHO} TPEmMHBI B ONHOPOIHO
noaBeprauekics capuram, 6e3rpaHHYROR cpene.



